作者 | 周泰辰![]() |
姓名汉语拼音 | Zhou Taichen |
学号 | 2022000005034 |
培养单位 | 兰州财经大学 |
电话 | 13520885028 |
电子邮件 | 1005619959@qq.com |
入学年份 | 2022-9 |
学位类别 | 专业硕士 |
培养级别 | 硕士研究生 |
一级学科名称 | 保险 |
学科代码 | 0255 |
第一导师姓名 | 张宗军 |
第一导师姓名汉语拼音 | Zhang Zongjun |
第一导师单位 | 兰州财经大学 |
第一导师职称 | 教授 |
题名 | 监管处罚视角下财险公司合规经营管理研究 |
英文题名 | Research on Compliance Management of Property and Casualty Insurance Companies from the Perspective of Regulatory Penalties |
关键词 | 监管处罚 |
外文关键词 | Regulatory penalties |
摘要 | 随着中国经济的快速发展和财产保险市场的日益成熟,财产险公司在应对监管要求、管理风险方面面临着越来越复杂的挑战。相比人身险,财险业务的短周期、高频次特征,使其在承保、理赔、再保险和资金运用等环节中面临更高的合规风险,且财险公司的业务受市场环境、自然灾害和经济波动的直接影响更大,监管处罚的触发因素更加多样化。如何在激烈的市场竞争中保持高水平合规、避免监管处罚,成为了财险公司面临的重要问题。本文挖掘并分析了中国财产保险行业在面临监管处罚后的行为模式,探讨了不同行为模式对公司风险管理的影响,从监管机构和财险公司两个角度提出了相应的改进建议。 本文首先通过Python爬虫、数据清洗、自然语言处理等方法挖掘统计了2005年-2023年内各财产保险公司的主要违规行为,研究揭示了监管处罚的集中领域,如费用管理不规范、保险产品承保操作不当、从业人员管理松散等,是行业中普遍存在的共性合规问题。进一步采用时空二维分析方法,探讨了财险公司在不同时期和不同地区的违规行为模式。研究发现,监管处罚力度在一定程度上能够影响财险公司的合规经营效果,同时科技监管的引入可能加速合规进程。此外,不同地区的财险公司在违规行为的频率、处罚缘由等方面存在显著差异,受地区经济发展水平和地方监管力度的共同影响。基于监管处罚数据与违规行为的时空分布特征,本文采用机器学习方法构建合规风险预测模型,结合历史处罚数据与财险公司特征,预测企业可能面临的监管风险,为保险公司识别潜在违规行为提供科学的决策支持。基于研究的主要发现,本文提出了针对监管机构和财险公司的具体政策建议。在监管机构层面,建议常态化加大监管处罚力度、加强科技监管的引入和发展、优化处罚形式与处罚缘由的匹配、关注欠发达地区的合规情况以及强化地方监管的作用。在财险公司层面,建议强化费用与业务管理、优化从业人员管理、促进区域均衡发展、加强对分支机构的合规管理、关注扩张过程中的合规风险,以提升行业整体的合规水平,推动财险市场的健康可持续发展。 |
英文摘要 | With the rapid development of China's economy and the increasing maturity of the property insurance market, property insurance companies are facing more and more complex challenges in meeting regulatory requirements and managing risks. Compared with life insurance, the short cycle and high frequency characteristics of property insurance business make it face higher compliance risks in underwriting, claims settlement, reinsurance and capital utilization, and the business of property insurance companies is more directly affected by market environment, natural disasters and economic fluctuations, with more diverse triggers for regulatory penalties. How to maintain a high level of compliance and avoid regulatory penalties in the fierce market competition has become an important issue for property insurance companies. This paper explores and analyzes the behavioral patterns of China's property insurance industry after facing regulatory penalties, discusses the impact of different behavioral patterns on company risk management, and puts forward corresponding improvement suggestions from the perspectives of regulatory authorities and property insurance companies. This paper first uses Python web crawlers, data cleaning, and natural language processing methods to mine and statistically analyze the main violations of each property insurance company from 2005 to 2023. The research reveals that the concentrated areas of regulatory penalties, such as non-standard fee management, improper underwriting operations of insurance products, and loose management of practitioners, are common compliance issues in the industry. Further, a two-dimensional spatio-temporal analysis method is adopted to explore the violation behavior patterns of property insurance companies in different periods and regions. The study finds that the intensity of regulatory penalties can to a certain extent affect the compliance operation effect of property insurance companies, and the introduction of technological supervision may accelerate the compliance process. In addition, there are significant differences in the frequency and reasons for penalties among property insurance companies in different regions, which are jointly influenced by the level of regional economic development and the intensity of local supervision. Based on the spatio-temporal distribution characteristics of regulatory penalty data and violation behaviors, this paper uses machine learning methods to build a compliance risk prediction model, combining historical penalty data and the characteristics of property insurance companies to predict the regulatory risks that enterprises may face, providing scientific decision support for insurance companies to identify potential violations. Based on the main findings of the research, this paper puts forward specific policy suggestions for regulatory authorities and property insurance companies. At the regulatory authority level, it is suggested to regularly increase the intensity of regulatory penalties, strengthen the introduction and development of technological supervision, optimize the matching of penalty forms and reasons, pay attention to the compliance situation in underdeveloped regions, and enhance the role of local supervision. At the level of property and casualty insurance companies, it is recommended to strengthen expense and business management, optimize employee management, promote regional balanced development, strengthen compliance management of branch offices, and pay attention to compliance risks during expansion to enhance the overall compliance level of the industry and promote the healthy and sustainable development of the property and casualty insurance market. |
学位类型 | 硕士 |
答辩日期 | 2025-05-24 |
学位授予地点 | 甘肃省兰州市 |
语种 | 中文 |
论文总页数 | 69 |
参考文献总数 | 53 |
馆藏号 | 0006699 |
保密级别 | 公开 |
中图分类号 | F84/142 |
文献类型 | 学位论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/39863 |
专题 | 金融学院 |
推荐引用方式 GB/T 7714 | 周泰辰. 监管处罚视角下财险公司合规经营管理研究[D]. 甘肃省兰州市. 兰州财经大学,2025. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
10741_2022000005034_(1997KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 | ||
10741_2022000005034_(6KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 | ||
授权页.pdf(151KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[周泰辰]的文章 |
百度学术 |
百度学术中相似的文章 |
[周泰辰]的文章 |
必应学术 |
必应学术中相似的文章 |
[周泰辰]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论