Auto-Weighted Multiple Graph Regularized Non-negative Tensor Tucker Decomposition for Clustering
Liu, Guimin1; Zhao, Ruijuan2; Zheng, Bing1; Yang, Fanyin1
2025-03
发表期刊JOURNAL OF SCIENTIFIC COMPUTING
卷号102期号:3
摘要Non-negative Tucker decomposition (NTD) has received much attention due to its efficient processing of high-dimensional non-negative data. To preserve the intrinsic geometric structure of the data, various graph regularization NTD methods have been proposed. However, most existing methods rely on single graph regularization, limiting their flexibility and adaptability, since a single graph may not adequately capture the intrinsic manifold structure of various datasets. To address this problem, this paper introduces an auto-weighted multiple graph structure as the regularizer for NTD, and then proposes a novel method called auto-weighted multiple graph regularized non-negative Tucker decomposition (AMGRNTD). The AMGRNTD method utilizes a linear combination of multiple simple graphs to more effectively preserve the intrinsic manifold structure of the original data, offering greater applicability to practical problems than single graph-based methods. Furthermore, the AMGRNTD method automatically learns an optimal weight for each graph without additional parameters. Experimental results on four real-world datasets demonstrate that the proposed method achieves better performance in image clustering than some existing state-of-the-art graph-based regularization methods.
关键词Non-negative tensor Tucker decomposition Multiple graph Clustering
DOI10.1007/s10915-025-02817-0
收录类别SCIE ; EI
ISSN0885-7474
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001415322600005
出版者SPRINGER/PLENUM PUBLISHERS
EI入藏号20250817923571
EI主题词Tensors
EI分类号1106.2 Data Handling and Data Processing ; 1201.1 Algebra and Number Theory ; 1201.14 Geometry and Topology ; 1201.4 Applied Mathematics ; 1201.8 Discrete Mathematics and Combinatorics, Includes Graph Theory, Set Theory
原始文献类型Article
EISSN1573-7691
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38808
专题信息工程与人工智能学院
通讯作者Zheng, Bing
作者单位1.Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Informat Engn & Artificial Intelligence, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Liu, Guimin,Zhao, Ruijuan,Zheng, Bing,et al. Auto-Weighted Multiple Graph Regularized Non-negative Tensor Tucker Decomposition for Clustering[J]. JOURNAL OF SCIENTIFIC COMPUTING,2025,102(3).
APA Liu, Guimin,Zhao, Ruijuan,Zheng, Bing,&Yang, Fanyin.(2025).Auto-Weighted Multiple Graph Regularized Non-negative Tensor Tucker Decomposition for Clustering.JOURNAL OF SCIENTIFIC COMPUTING,102(3).
MLA Liu, Guimin,et al."Auto-Weighted Multiple Graph Regularized Non-negative Tensor Tucker Decomposition for Clustering".JOURNAL OF SCIENTIFIC COMPUTING 102.3(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Guimin]的文章
[Zhao, Ruijuan]的文章
[Zheng, Bing]的文章
百度学术
百度学术中相似的文章
[Liu, Guimin]的文章
[Zhao, Ruijuan]的文章
[Zheng, Bing]的文章
必应学术
必应学术中相似的文章
[Liu, Guimin]的文章
[Zhao, Ruijuan]的文章
[Zheng, Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。