作者庞秋月
姓名汉语拼音PangQiuyue
学号2021000003079
培养单位兰州财经大学
电话18710381109
电子邮件2592533597@qq.com
入学年份2021-9
学位类别学术硕士
培养级别硕士研究生
学科门类理学
一级学科名称统计学
学科方向数理统计学
学科代码0714Z3
授予学位理学硕士学位
第一导师姓名郭精军
第一导师姓名汉语拼音GuoJingjun
第一导师单位兰州财经大学
第一导师职称教授
题名基于混合次分数跳过程的几何亚式期权模糊定价及统计模拟
英文题名Geometric Asian Option Fuzzy Pricing and Statistical Simulation Based on Sub-mixed Fractional Brownian Motion with Jump
关键词混合次分数跳过程 几何亚式期权 模糊集理论 风险中性原理 Monte Carlo 模拟
外文关键词Mixed sub-fractional process with jump; Geometric Asian options; Fuzzy theory; Risk-neutral principle; Monte Carlo simulation
摘要

       亚式期权作为一种典型的路径依赖型奇异期权,其定价方法的研究一直是金 融学领域研究的热点问题之一。目前,已有文献很少同时考虑到金融市场的随机 性、模糊性以及分形特征。但实际中,金融市场不仅具有随机性和分形特征,也 具有模糊性。因此,本文考虑在模糊状态下用混合次分数跳过程研究几何亚式期 权定价问题,从而更加全面地刻画金融资产的价格变动规律。本文主要研究内容 如下:

       第一,考虑到金融资产价格的长记忆性及跳跃现象,基于混合次分数布朗运 动,结合泊松过程构建了几何亚式期权定价模型。首先,根据混合次分数Itô公式, 得到混合次分数跳过程Itô公式及其股价所满足随机微分方程的解析解;其次,运 用风险中性原理给出几何亚式看涨期权的定价公式;最后,通过数值实验讨论不 同 Hurst 指数 H 和泊松强度??下,股价、无风险利率及波动率等参数与期权价格 的关系。

       第二,进行 Monte Carlo 模拟和实证分析。本部分主要给出了混合次分数跳 过程下,标的资产波动率参数估计表达式的推导过程。然后,根据标的资产的实 际数据得到各参数估计值,进而进行 Monte Carlo 模拟及拟合效果分析,验证了 该模型的合理性和实用性。

       第三,进一步考虑金融市场模糊性,引入模糊集理论构建几何亚式模糊期权 定价模型。首先,基于已建立的几何亚式期权定价模型,通过三角模糊数和多元 扩张原理,得到几何亚式看涨模糊期权价格的区间端点,给出模糊定价公式;其 次,数值模拟分析了置信度和 Hurst 指数对模糊价格的影响;最后,将本文所建 立模型与经典 BS 模型进行对比。 结果表明,混合次分数跳过程模型下的模拟路径更接近真实路径,且在此模 型下,结合模糊集理论得到的模糊价格区间也更为合理,更有助于金融投资者的 决策。

英文摘要

       As a typical path-dependent singular option, the pricing method of Asian option has always been one of the hot issues in the field of finance. At present, few literatures have considered randomness, fractal characteristics and fuzziness of financial markets at the same time. However, in practice, the financial market has not only randomness and fractal characteristics, but also fuzziness. Therefore, in this thesis, we consider using mixed sub-fractional process with jump to study the geometric Asian option pricing problem in fuzzy state, so as to describe the price change law of financial assets more comprehensively. The main research contents of this thesis are as follows:

       Firstly, considering the long memory and jump phenomenon of financial asset prices, a geometric Asian option pricing model is constructed based on mixed sub-fractional Brownian motion and Poisson process. Firstly, by using the mixed sub-fractional Itô formula, the analytical solution of the stochastic differential equation satisfying the mixed sub-fractional jump process Itô formula and its stock price is obtained. Secondly, the pricing formula of geometric Asian call option is given based on the risk-neutral principle. Finally, the relationship between stock price, risk-free interest rate and volatility and option price is discussed by numerical experiments with different Hurst index H and Poisson intensity λ.

         Secondly, Monte Carlo simulation and empirical analysis are carried out. This part mainly gives the derivation of expression for estimating the volatility parameter of the underlying asset. under the mixed fractional jump process. Then, the estimated values of each parameter are obtained according to actual data of the underlying asset., and the Monte Carlo simulation and fitting effect analysis are carried out to verify the rationality and practicability of the model.

         Thirdly, considering the fuzziness of financial market further, the geometric Asian fuzzy option pricing model is constructed by introducing fuzzy theory. Firstly, based on the established geometric Asian option pricing model, the range end points of the geometric Asian call fuzzy option price are obtained through the triangular fuzzy number and the multiple expansion principle, and the fuzzy pricing formula is given. Secondly, the influence of confidence and Hurst index on fuzzy price is analyzed by numerical simulation. Finally, the model established in this thesis is compared with the classical BS model. The results show that the simulated path under the mixed fractional jump process model is closer to the real path. And under this model, the fuzzy price interval obtained by combining the fuzzy theory is more reasonable and more helpful to the decision of financial investors.

学位类型硕士
答辩日期2024-05-25
学位授予地点甘肃省兰州市
语种中文
论文总页数62
参考文献总数57
馆藏号0005680
保密级别公开
中图分类号O212/38
文献类型学位论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/37012
专题统计与数据科学学院
推荐引用方式
GB/T 7714
庞秋月. 基于混合次分数跳过程的几何亚式期权模糊定价及统计模拟[D]. 甘肃省兰州市. 兰州财经大学,2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2021000003079.pdf(1777KB)学位论文 开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[庞秋月]的文章
百度学术
百度学术中相似的文章
[庞秋月]的文章
必应学术
必应学术中相似的文章
[庞秋月]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2021000003079.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。