作者 | 李倩倩 |
姓名汉语拼音 | Li Qianqian |
学号 | 2020000001010 |
培养单位 | 兰州财经大学 |
电话 | 15536818112 |
电子邮件 | 1298519200@qq.com |
入学年份 | 2020-9 |
学位类别 | 学术硕士 |
培养级别 | 硕士研究生 |
学科门类 | 经济学 |
一级学科名称 | 应用经济学 |
学科方向 | 区域经济学 |
学科代码 | 020202 |
授予学位 | 经济学硕士 |
第一导师姓名 | 赵永平 |
第一导师姓名汉语拼音 | Zhao Yongping |
第一导师单位 | 兰州财经大学 |
第一导师职称 | 教授 |
题名 | 我国共同富裕的时空差异与驱动因素研究 |
英文题名 | Research on the Spatial-temporal Differences and Driving Factors of Common Prosperity in China |
关键词 | 共同富裕 熵权法 时空差异 驱动因素分析 空间溢出效应 |
外文关键词 | Common prosperity ; Entropy weight method ; Spatial-temporal differences ; Analysis of driving factors ; Spatial spillover effects |
摘要 | 共同富裕是社会主义的本质要求,也是中华民族自古以来的美好理想。我国当前正处于着力推动实现共同富裕的关键时期,在此背景下,分析我国共同富裕发展的现状,识别共同富裕的驱动因素,具有重要意义。本文在梳理和总结前人研究成果基础上,回顾我国共同富裕思想演进历程,并基于2011-2020年我国30个省份的统计数据,利用熵值法测算出共同富裕指数,分别从全国、区域、省域层面进行了分析,然后进行了空间特征分析。本文选取经济发展、教育发展、基础设施、产业结构和数字经济作为驱动因素,利用固定效应模型和空间杜宾模型实证分析各项驱动因素对共同富裕的影响。最后总结研究结论和提出政策启示。 主要研究结论为:(1)2011-2020年我国共同富裕水平呈现波动性上升的趋势,其中,物质生活富裕对共同富裕的贡献程度最大,其次是生活环境宜居、人群差距缩小和精神生活富足,城乡差距缩小和区域差距缩小对我国共同富裕程度的贡献相对较小。从区域层面来看,南方的共同富裕程度指数高于北方,同时南方的富裕程度略高于北方,共同程度略低于北方;分东中西来看,共同富裕水平东中西依次递减,且东部与中西部的发展差距较大,中部和西部间发展差距较小。从省域层面来看,我国共同富裕在空间上呈现非均衡性,呈现“东高西低”的特征,上海、北京、江苏等11个省份属于第一梯队;河北、宁夏、重庆等19个省份属于第二梯队;在共同富裕发展类型方面,北京、上海、江苏等7省属于共同富裕型,山东、内蒙古、河北、河南属于优先富裕型,安徽、湖南、湖北等7省属于优先共同型,山西、陕西、吉林等11省属于双滞后型。(2)全局空间自相关结果显示,我国共同富裕呈现空间集聚特征;局部空间自相关结果显示,我国大多数省份呈H-H型聚集或L-L型聚集,部分东部沿海地区属于可以发挥“先富”带动“后富”的作用。(3)基准回归结果显示,经济发展、教育发展、基础设施建设、产业结构高极化和数字产业化可以驱动共同富裕发展,且经济发展和教育发展的驱动作用更明显;而数字基础设施对共同富裕存在一定抑制作用;产业结构合理化和产业数字化对共同富裕的影响不显著。考虑空间因素之后发现,教育发展水平和基础设施建设对共同富裕存在反向空间溢出效应,产业结构合理化和数字产业化都一定程度上对共同富裕存在正向的空间溢出效应。 |
英文摘要 | Common prosperity is the essential requirement of socialism and the beautiful ideal of the Chinese nation since ancient times. China is currently in a critical period of promoting the realization of common prosperity, and in this context, it is of great significance to analyze the present status and identify the driving factors of common prosperity. Based on the statistical data of 30 provinces in China from 2011 to 2020, this paper uses the entropy value method to calculate the common prosperity index, analyzes it from the national, regional and provincial levels, and then analyzes the spatial characteristics. This paper selects economic development, education development, infrastructure, industrial structure and digital economy as the driving factors, and empirically analyzes the impact of various driving factors on common prosperity by using the fixed-effect model and the spatial Dubin model. Finally, the research conclusions and policy implications are put forward. The main research conclusions are: (1) The level of common prosperity from 2011 to 2020 showed a trend of volatile increasing, and material prosperity contributed the most to common prosperity, followed by livable living environment, narrowing of population gap and rich spiritual life, and the narrowing of urban-rural gap and regional gap contributed relatively little to the common prosperity of China. From a regional perspective, the common wealth index of the south is higher than that of the north, while the wealth of the south is slightly higher than that of the north, and the degree of commonality is slightly lower than that of the north; From the perspective of eastern, central and western regions, the level of common prosperity decreases in the east, central and western regions, and the development gap between the east and the central and western regions is large, and the development gap between the central and western regions is small. From the perspective of the provincial level, China's common prosperity is not balanced in space, showing the characteristics of "high in the east and low in the west", and 11 provinces such as Shanghai, Beijing, Jiangsu and Zhejiang belong to the first echelon. 19 provinces such as Hebei, Ningxia and Chongqing belong to the second echelon; In terms of common prosperity development types, 7 provinces such as Beijing, Shanghai and Jiangsu belong to the common prosperity type, Shandong, Inner Mongolia, Hebei and Henan belong to the priority prosperity type, 7 provinces such as Anhui, Hunan and Hubei belong to the priority common type, and 11 provinces such as Shanxi, Shaanxi and Jilin belong to the double lag type. (2) The results of global spatial autocorrelation indicated that common prosperity showed the characteristics of spatial agglomeration; The results of local spatial autocorrelation showed that most provinces had H-H-shaped or L-L-type aggregation, accounting for about 80% of the 30 provinces. Some of the eastern coastal areas can drive the surrounding areas to prosperity. (3) Economic development, education development, infrastructure, industrial structure high polarization and digital industrialization can drive common prosperity development, and the driving role of economic development and education development is more obvious; Digital infrastructure has a certain inhibitory effect on common prosperity; The rationalization of industrial structure and industrial digitalization have little impact on common prosperity. After considering the spatial factors, it is found that the level of education development and infrastructure construction have a reverse spatial spillover effect on common prosperity, and the rationalization of industrial structure and digital industrialization have a positive spatial spillover effect on common prosperity to a certain extent. |
学位类型 | 硕士 |
答辩日期 | 2023-05-21 |
学位授予地点 | 甘肃省兰州市 |
研究方向 | 城镇化与城市经济 |
语种 | 中文 |
论文总页数 | 60 |
参考文献总数 | 61 |
馆藏号 | 0004744 |
保密级别 | 公开 |
中图分类号 | F061.5/132 |
文献类型 | 学位论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/34365 |
专题 | 经济学院 |
推荐引用方式 GB/T 7714 | 李倩倩. 我国共同富裕的时空差异与驱动因素研究[D]. 甘肃省兰州市. 兰州财经大学,2023. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
2020000001010.pdf(1578KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[李倩倩]的文章 |
百度学术 |
百度学术中相似的文章 |
[李倩倩]的文章 |
必应学术 |
必应学术中相似的文章 |
[李倩倩]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论