Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients
Yang, Zhaoqiang1,2; Xu, Chenglong1
2025-05-01
发表期刊FRACTAL AND FRACTIONAL
卷号9期号:5
摘要This paper presents a modified Euler-Maruyama (EM) method for mixed stochastic fractional integro-differential equations (mSFIEs) with Caputo-type fractional derivatives whose coefficients satisfy local Lipschitz and linear growth conditions. First, we transform the mSFIEs into an equivalent mixed stochastic Volterra integral equations (mSVIEs) using a fractional calculus technique. Then, we establish the well-posedness of the analytical solutions of the mSVIEs. After that, a modified EM scheme is formulated to approximate the numerical solutions of the mSVIEs, and its strong convergence is proven based on local Lipschitz and linear growth conditions. Furthermore, we derive the modified EM scheme under the same conditions in the L2 sense, which is consistent with the strong convergence result of the corresponding EM scheme. Notably, the strong convergence order under local Lipschitz conditions is inherently lower than the corresponding order under global Lipschitz conditions. Finally, numerical experiments are presented to demonstrate that our approach not only circumvents the restrictive integrability conditions imposed by singular kernels, but also achieves a rigorous convergence order in the L2 sense.
关键词mixed stochastic fractional integro-differential equations fractional calculus mixed stochastic Volterra integral equation modified Euler-Maruyama method convergence rate analysis
DOI10.3390/fractalfract9050296
收录类别SCIE
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Interdisciplinary Applications
WOS记录号WOS:001496045900001
出版者MDPI
原始文献类型Article
EISSN2504-3110
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/39288
专题图书馆
通讯作者Yang, Zhaoqiang
作者单位1.Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China;
2.Lanzhou Univ Finance & Econ, Lib & Sch Finance, Lanzhou 730101, Peoples R China
第一作者单位兰州财经大学
通讯作者单位兰州财经大学
推荐引用方式
GB/T 7714
Yang, Zhaoqiang,Xu, Chenglong. Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients[J]. FRACTAL AND FRACTIONAL,2025,9(5).
APA Yang, Zhaoqiang,&Xu, Chenglong.(2025).Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients.FRACTAL AND FRACTIONAL,9(5).
MLA Yang, Zhaoqiang,et al."Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients".FRACTAL AND FRACTIONAL 9.5(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Zhaoqiang]的文章
[Xu, Chenglong]的文章
百度学术
百度学术中相似的文章
[Yang, Zhaoqiang]的文章
[Xu, Chenglong]的文章
必应学术
必应学术中相似的文章
[Yang, Zhaoqiang]的文章
[Xu, Chenglong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。