Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients | |
Yang, Zhaoqiang1,2![]() | |
2025-05-01 | |
发表期刊 | FRACTAL AND FRACTIONAL
![]() |
卷号 | 9期号:5 |
摘要 | This paper presents a modified Euler-Maruyama (EM) method for mixed stochastic fractional integro-differential equations (mSFIEs) with Caputo-type fractional derivatives whose coefficients satisfy local Lipschitz and linear growth conditions. First, we transform the mSFIEs into an equivalent mixed stochastic Volterra integral equations (mSVIEs) using a fractional calculus technique. Then, we establish the well-posedness of the analytical solutions of the mSVIEs. After that, a modified EM scheme is formulated to approximate the numerical solutions of the mSVIEs, and its strong convergence is proven based on local Lipschitz and linear growth conditions. Furthermore, we derive the modified EM scheme under the same conditions in the L2 sense, which is consistent with the strong convergence result of the corresponding EM scheme. Notably, the strong convergence order under local Lipschitz conditions is inherently lower than the corresponding order under global Lipschitz conditions. Finally, numerical experiments are presented to demonstrate that our approach not only circumvents the restrictive integrability conditions imposed by singular kernels, but also achieves a rigorous convergence order in the L2 sense. |
关键词 | mixed stochastic fractional integro-differential equations fractional calculus mixed stochastic Volterra integral equation modified Euler-Maruyama method convergence rate analysis |
DOI | 10.3390/fractalfract9050296 |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Interdisciplinary Applications |
WOS记录号 | WOS:001496045900001 |
出版者 | MDPI |
原始文献类型 | Article |
EISSN | 2504-3110 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/39288 |
专题 | 图书馆 |
通讯作者 | Yang, Zhaoqiang |
作者单位 | 1.Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China; 2.Lanzhou Univ Finance & Econ, Lib & Sch Finance, Lanzhou 730101, Peoples R China |
第一作者单位 | 兰州财经大学 |
通讯作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Yang, Zhaoqiang,Xu, Chenglong. Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients[J]. FRACTAL AND FRACTIONAL,2025,9(5). |
APA | Yang, Zhaoqiang,&Xu, Chenglong.(2025).Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients.FRACTAL AND FRACTIONAL,9(5). |
MLA | Yang, Zhaoqiang,et al."Strong Convergence of a Modified Euler-Maruyama Method for Mixed Stochastic Fractional Integro-Differential Equations with Local Lipschitz Coefficients".FRACTAL AND FRACTIONAL 9.5(2025). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论