STRONG CONVERGENCE OF LEVY-DRIVEN MIXED STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH APPLICATION TO THE ROUGH MIXED VOLATILITY MODELS | |
Yang, Zhaoqiang1,2![]() | |
2025-06 | |
发表期刊 | COMMUNICATIONS ON ANALYSIS AND COMPUTATION
![]() |
卷号 | 4页码:1-38 |
摘要 | In this paper, we focus on investigating the strong convergence of Levy-driven mixed stochastic integro-differential equations (L-mSIDEs) with singular kernels under the local Lipschitz and linear growth conditions. First, we transform the L-mSIDEs into an equivalent Levy-driven mixed stochastic Volterra integral equations (L-mSVIEs) by a fractional calculus technique. Then, we rigorously analyze the existence, uniqueness, boundedness, and the continuous dependence of the analytical solutions to the L-mSVIEs. After that, we propose a modified stochastic Milstein method as a numerical solution for the L-mSVIEs by the local truncation technique and sum-of-exponentials (SOE) approximation scheme to improve the calculations effectively. Specifically, we derive the precise convergence order of this method under the same condition in the L2 sense. Our stochastic Milstein-scheme can achieve the desired accuracy O(epsilon), and the computational cost of a single sample from O(N2 + epsilon-2- 2 ) and O(N + epsilon-1- 1 ) to O(N log N + epsilon- 2 ) and O (log N + epsilon-1- 1 ) when T >> 1, and for T approximate to 1, the reductions are to O(N log2 N+epsilon- 2 ) and O(log2 N + epsilon-1-1 ), respectively. To verify the accuracy and robustness of our theoretical framework, we conduct numerical experiments using rough mixed volatility models. By comparing our results with [18], we demonstrate that the current approach not only circumvents the restrictive integrability conditions imposed by singular kernels, but also achieves a rigorous convergence order in the L2-norm framework. |
关键词 | Levy-driven mixed stochastic integro-differential equations fractional calculus mixed stochastic Volterra integral equation stochastic Milstein-scheme convergence order rough mixed volatility models |
DOI | 10.3934/cac.2025005 |
收录类别 | ESCI |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:001479020600001 |
出版者 | AMER INST MATHEMATICAL SCIENCES-AIMS |
原始文献类型 | Article |
EISSN | 2837-0562 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/39148 |
专题 | 图书馆 |
通讯作者 | Xu, Chenglong |
作者单位 | 1.Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China; 2.Lanzhou Univ Finance & Econ, Lib & Sch Stat, Lanzhou 730101, Gansu, Peoples R China |
第一作者单位 | 兰州财经大学 |
推荐引用方式 GB/T 7714 | Yang, Zhaoqiang,Xu, Chenglong. STRONG CONVERGENCE OF LEVY-DRIVEN MIXED STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH APPLICATION TO THE ROUGH MIXED VOLATILITY MODELS[J]. COMMUNICATIONS ON ANALYSIS AND COMPUTATION,2025,4:1-38. |
APA | Yang, Zhaoqiang,&Xu, Chenglong.(2025).STRONG CONVERGENCE OF LEVY-DRIVEN MIXED STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH APPLICATION TO THE ROUGH MIXED VOLATILITY MODELS.COMMUNICATIONS ON ANALYSIS AND COMPUTATION,4,1-38. |
MLA | Yang, Zhaoqiang,et al."STRONG CONVERGENCE OF LEVY-DRIVEN MIXED STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH APPLICATION TO THE ROUGH MIXED VOLATILITY MODELS".COMMUNICATIONS ON ANALYSIS AND COMPUTATION 4(2025):1-38. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yang, Zhaoqiang]的文章 |
[Xu, Chenglong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论