AI-Driven Construction and Application of Gardens: Optimizing Design and Sustainability with Machine Learning
Wang, Jingyi1; Song, Yan2; Yang, Haozhong3; Li, Han4; Zhou, Minglan5
2025-02
发表期刊INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
卷号16期号:2页码:1231-1239
摘要Artificial intelligence (AI) integration into environmental analysis has revolutionized various fields. Including the construction and application of gardens, by enabling precise classification and decision-making for sustainable practices. This paper presents a strong AI-driven framework uses convolutional neural network (CNN) and pretrained models like VGG16 and InceptionV3 to classify eight distinct environmental classes. The CNN achieved superior performance Among the tested models and reaching an impressive 98% accuracy with optimized batch sizes. This demonstrate its effectiveness for precise environmental condition classification. This work highlights the crucial role of AI in advancing the construction and application of gardens. It offers insights into optimizing garden design through accurate environmental data analysis. The diverse dataset used ensures the framework's adaptability to real-world applications, making it a valuable resource for sustainable development and eco-friendly design strategies. This paper not only contributes to the field of AI-driven environmental analysis but also provides a foundation for future innovations in garden management and sustainability, paving the way for intelligent solutions in the evolving landscape of ecological design.
关键词Artificial intelligence machine learning construction and application of garden design convolutional neural network VGG16 InceptionV3
收录类别ESCI
ISSN2158-107X
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:001441761400001
出版者SCIENCE & INFORMATION SAI ORGANIZATION LTD
原始文献类型Article
EISSN2156-5570
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38929
专题金融学院
通讯作者Wang, Jingyi
作者单位1.Xian Univ Architecture & Technol, Sch Architecture, Xian 710055, Peoples R China;
2.Survey Inst Shaanxi Land Engn Construct Grp, Xian 710065, Peoples R China;
3.CSCES AECOM CONSULTANTS CO LTD, Lanzhou 730000, Peoples R China;
4.Univ Sains Malaysia, Sch Housing Bldg & Planning, Gelugor 11800, Penang, Malaysia;
5.Lanzhou Univ Finance & Econ, Sch Art, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jingyi,Song, Yan,Yang, Haozhong,et al. AI-Driven Construction and Application of Gardens: Optimizing Design and Sustainability with Machine Learning[J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS,2025,16(2):1231-1239.
APA Wang, Jingyi,Song, Yan,Yang, Haozhong,Li, Han,&Zhou, Minglan.(2025).AI-Driven Construction and Application of Gardens: Optimizing Design and Sustainability with Machine Learning.INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS,16(2),1231-1239.
MLA Wang, Jingyi,et al."AI-Driven Construction and Application of Gardens: Optimizing Design and Sustainability with Machine Learning".INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 16.2(2025):1231-1239.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jingyi]的文章
[Song, Yan]的文章
[Yang, Haozhong]的文章
百度学术
百度学术中相似的文章
[Wang, Jingyi]的文章
[Song, Yan]的文章
[Yang, Haozhong]的文章
必应学术
必应学术中相似的文章
[Wang, Jingyi]的文章
[Song, Yan]的文章
[Yang, Haozhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。