Low-rank tensor completion via tensor tri-factorization and sparse transformation
Yang, Fanyin1; Zheng, Bing1; Zhao, Ruijuan2
2025-08
在线发表日期2025-02
发表期刊SIGNAL PROCESSING
卷号233
摘要Low-rank tensor factorization techniques have gained significant attention in low-rank tensor completion (LRTC) tasks due to their ability to reduce computational costs while maintaining the tensor's low-rank structure. However, existing methods often overlook the significance of tensor singular values and the sparsity of the tensor's third-mode fibers in the transformation domain, leading to an incomplete capture of both the low-rank structure and the inherent sparsity, which limits recovery accuracy. To address these issues, we propose a novel tensor tri-factorization logarithmic norm (TTF-LN) that more effectively captures the low-rank structure by emphasizing the significance of tensor singular values. Building on this, we introduce the tensor tri-factorization with sparse transformation (TTF-ST) model for LRTC, which integrates both low-rank and sparse priors to improve accuracy of incomplete tensor recovery. The TTF-ST model incorporates a sparse transformation that represents the tensor as the product of a low-dimensional sparse representation tensor and a compact orthogonal matrix, which extracts sparsity while reducing computational complexity. To solve the proposed model, we design an optimization algorithm based on the alternating direction method of multipliers (ADMM) and provide a rigorous theoretical analysis. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods in both recovery accuracy and computational efficiency.
关键词Low-rank tensor completion Tensor tubal rank Tensor tri-factorization logarithmic norm Sparse transformation
DOI10.1016/j.sigpro.2025.109935
收录类别SCIE ; EI
ISSN0165-1684
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001428658200001
出版者ELSEVIER
EI入藏号20250817891975
EI主题词Tensors
EI分类号1106.6 Data Analytics ; 1201.1 Algebra and Number Theory ; 1201.14 Geometry and Topology ; 1201.4 Applied Mathematics
原始文献类型Article
EISSN1872-7557
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38810
专题信息工程与人工智能学院
通讯作者Zheng, Bing
作者单位1.Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China;
2.Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou 730101, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Yang, Fanyin,Zheng, Bing,Zhao, Ruijuan. Low-rank tensor completion via tensor tri-factorization and sparse transformation[J]. SIGNAL PROCESSING,2025,233.
APA Yang, Fanyin,Zheng, Bing,&Zhao, Ruijuan.(2025).Low-rank tensor completion via tensor tri-factorization and sparse transformation.SIGNAL PROCESSING,233.
MLA Yang, Fanyin,et al."Low-rank tensor completion via tensor tri-factorization and sparse transformation".SIGNAL PROCESSING 233(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
百度学术
百度学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
必应学术
必应学术中相似的文章
[Yang, Fanyin]的文章
[Zheng, Bing]的文章
[Zhao, Ruijuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。