Institutional Repository of School of Information Engineering and Artificial Intelligence
Boundedness of Certain Calderón-Zygmund Type Singular Integrals on Morrey Spaces | |
Xin, Yinping1,2![]() | |
2025-01 | |
发表期刊 | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
![]() |
卷号 | 48期号:1 |
摘要 | Let beta is an element of(0,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,n)$$\end{document}. In this paper, we study the boundedness of the singular integral T(f)(x):=p.v.integral Rn Omega(y)|y|n-beta f(x-y)dy,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T(f)(x):=\mathrm {p.v.}\int _{\mathbb {R}<^>n}\frac{\Omega (y)}{|y|<^>{n-\beta }}f(x-y)\,dy, \end{aligned}$$\end{document}which can be viewed as an extension of the classical Calder & oacute;n-Zygmund singular integral, on Morrey spaces. Precisely, let q is an element of(1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,\infty )$$\end{document} and theta is an element of(0,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in (0,n]$$\end{document}. We prove that, for any f is an element of Mq theta(Rn)boolean AND M1 theta(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {M}<^>{\theta }_q(\mathbb {R}<^>n)\cap \mathcal {M}<^>{\theta }_1(\mathbb {R}<^>n)$$\end{document}, Tf is an element of Mq theta(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tf\in \mathcal {M}<^>{\theta }_q(\mathbb {R}<^>n)$$\end{document} and & Vert;Tf & Vert;Mq theta(Rn)<= C & Vert;f & Vert;Mq theta(Rn)+beta(q-1)nqn(q-1)-beta qq & Vert;f & Vert;M1 theta(Rn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert Tf\Vert _{\mathcal {M}<^>{\theta }_q(\mathbb {R}<^>n)}\le C\left[ \Vert f\Vert _{\mathcal {M}<^>{\theta }_q(\mathbb {R}<^>n)} +\frac{\beta <^>{\frac{(q-1)n}{q}}}{\root q \of {n(q-1)-\beta q}}\Vert f\Vert _{\mathcal {M}<^>{\theta }_1(\mathbb {R}<^>n)}\right] , \end{aligned}$$\end{document}where the constant C is independent of beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and f, and Mq theta(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}<^>{\theta }_q(\mathbb {R}<^>n)$$\end{document} denotes the Morrey space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}. |
关键词 | Calder & oacute n-Zygmund type singular integral Weight Morrey space |
DOI | 10.1007/s40840-024-01802-4 |
收录类别 | SCIE |
ISSN | 0126-6705 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:001370652000002 |
出版者 | SPRINGERNATURE |
原始文献类型 | Article |
EISSN | 2180-4206 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/38515 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Yang, Sibei |
作者单位 | 1.Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China; 2.Lanzhou Univ Finance & Econ, Sch Informat Engn & Artificial Intelligence, Lanzhou 730010, Peoples R China |
第一作者单位 | 信息工程与人工智能学院 |
推荐引用方式 GB/T 7714 | Xin, Yinping,Yang, Sibei. Boundedness of Certain Calderón-Zygmund Type Singular Integrals on Morrey Spaces[J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY,2025,48(1). |
APA | Xin, Yinping,&Yang, Sibei.(2025).Boundedness of Certain Calderón-Zygmund Type Singular Integrals on Morrey Spaces.BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY,48(1). |
MLA | Xin, Yinping,et al."Boundedness of Certain Calderón-Zygmund Type Singular Integrals on Morrey Spaces".BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY 48.1(2025). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xin, Yinping]的文章 |
[Yang, Sibei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xin, Yinping]的文章 |
[Yang, Sibei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xin, Yinping]的文章 |
[Yang, Sibei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论