Institutional Repository of School of Information Engineering and Artificial Intelligence
A Dual-Module Information Fusion Aspect-Level Sentiment Classification Model | |
He, Bowen![]() ![]() ![]() ![]() | |
2024 | |
会议名称 | 5th International Conference on Electronic Communication and Artificial Intelligence, ICECAI 2024 |
会议录名称 | 2024 5th International Conference on Electronic Communication and Artificial Intelligence, ICECAI 2024
![]() |
页码 | 19-23 |
会议日期 | May 31, 2024 - June 2, 2024 |
会议地点 | Hybrid, Shenzhen, China |
会议录编者/会议主办者 | IEEE |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
摘要 | Aspect-level sentiment categorization is the task of identifying sentiments or opinions expressed about particular aspects or entities in a given text. It involves analyzing the sentiment of different aspects or features in a text, such as product features in a customer review or a specific topic in a social media post. The goal is to categorize the sentiment of each aspect, e.g., positive, negative or neutral. In this paper, we propose a BD-MGCN model via bimodular information fusion for addressing the shortcomings of traditional sentiment classification models in feature extraction and fusion. The model includes a BERT pre-trained multi-granularity convolution (B-MGCN) module based on BERT pre-training and a syntactic relation-based graph convolution (Dep-GCN) module with feature fusion via the attention mechanism. The experimental results demonstrate that the model performs well in terms of prediction accuracy and F1 value, and can effectively mine and fuse feature information to improve the performance of sentiment classification. © 2024 IEEE. |
关键词 | Classification (of information) Data fusion BERT pre-training Classification models Customer review Features fusions Multi-granularity Multi-granularity convolution Pre-training Product feature Sentiment classification Social media |
DOI | 10.1109/ICECAI62591.2024.10675168 |
收录类别 | EI |
语种 | 英语 |
EI入藏号 | 20244217193933 |
EI主题词 | Information fusion |
EI分类号 | 1106.2 ; 716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/38157 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Li, Qiang |
作者单位 | School of Information Engineering, Lanzhou University of Finance and Economics, Gansu, Lanzhou, China |
通讯作者单位 | 信息工程与人工智能学院 |
推荐引用方式 GB/T 7714 | He, Bowen,Li, Qiang,Zhang, Yihua,et al. A Dual-Module Information Fusion Aspect-Level Sentiment Classification Model[C]//IEEE:Institute of Electrical and Electronics Engineers Inc.,2024:19-23. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论