A Dual-Module Information Fusion Aspect-Level Sentiment Classification Model
He, Bowen; Li, Qiang; Zhang, Yihua; Zhang, Yongfu
2024
会议名称5th International Conference on Electronic Communication and Artificial Intelligence, ICECAI 2024
会议录名称2024 5th International Conference on Electronic Communication and Artificial Intelligence, ICECAI 2024
页码19-23
会议日期May 31, 2024 - June 2, 2024
会议地点Hybrid, Shenzhen, China
会议录编者/会议主办者IEEE
出版者Institute of Electrical and Electronics Engineers Inc.
摘要Aspect-level sentiment categorization is the task of identifying sentiments or opinions expressed about particular aspects or entities in a given text. It involves analyzing the sentiment of different aspects or features in a text, such as product features in a customer review or a specific topic in a social media post. The goal is to categorize the sentiment of each aspect, e.g., positive, negative or neutral. In this paper, we propose a BD-MGCN model via bimodular information fusion for addressing the shortcomings of traditional sentiment classification models in feature extraction and fusion. The model includes a BERT pre-trained multi-granularity convolution (B-MGCN) module based on BERT pre-training and a syntactic relation-based graph convolution (Dep-GCN) module with feature fusion via the attention mechanism. The experimental results demonstrate that the model performs well in terms of prediction accuracy and F1 value, and can effectively mine and fuse feature information to improve the performance of sentiment classification. © 2024 IEEE.
关键词Classification (of information) Data fusion BERT pre-training Classification models Customer review Features fusions Multi-granularity Multi-granularity convolution Pre-training Product feature Sentiment classification Social media
DOI10.1109/ICECAI62591.2024.10675168
收录类别EI
语种英语
EI入藏号20244217193933
EI主题词Information fusion
EI分类号1106.2 ; 716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符http://ir.lzufe.edu.cn/handle/39EH0E1M/38157
专题信息工程与人工智能学院
通讯作者Li, Qiang
作者单位School of Information Engineering, Lanzhou University of Finance and Economics, Gansu, Lanzhou, China
通讯作者单位信息工程与人工智能学院
推荐引用方式
GB/T 7714
He, Bowen,Li, Qiang,Zhang, Yihua,et al. A Dual-Module Information Fusion Aspect-Level Sentiment Classification Model[C]//IEEE:Institute of Electrical and Electronics Engineers Inc.,2024:19-23.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[He, Bowen]的文章
[Li, Qiang]的文章
[Zhang, Yihua]的文章
百度学术
百度学术中相似的文章
[He, Bowen]的文章
[Li, Qiang]的文章
[Zhang, Yihua]的文章
必应学术
必应学术中相似的文章
[He, Bowen]的文章
[Li, Qiang]的文章
[Zhang, Yihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。