Institutional Repository of School of Information Engineering and Artificial Intelligence
Structure preserved fast dimensionality reduction | |
Yi, Jihai1![]() ![]() ![]() ![]() ![]() | |
2024-09 | |
发表期刊 | Applied Soft Computing
![]() |
卷号 | 162 |
摘要 | Many graph-based unsupervised dimensionality reduction techniques have raised concerns about their high accuracy. However, there is an urgent need to address the enormous time consumption problem in large-scale data scenarios. Therefore, we present a novel approach named Structure Preserved Fast Dimensionality Reduction (SPFDR). Firstly, the parameter-insensitive, sparse, and scalable bipartite graph is constructed to build the similarity matrix. Then, employing alternating iterative optimization, the linear dimensionality reduction matrix and the optimal similarity matrix preserved cluster structure are learned. The computational complexity of the conventional graph-based dimension reduction method costs O(n2d+d3), yet the proposed approach is O(ndm+nm2), wherein n, m, and d are the number of instances, anchors, and features, respectively. Eventually, experiments conducted with multiple open datasets will provide convincing evidence for how effective and efficient the proposed method is. © 2024 Elsevier B.V. |
关键词 | Data reduction Graph theory Graphic methods Matrix algebra Bipartite graphs Dimensionality reduction Dimensionality reduction techniques Graph-based High-accuracy Iterative Optimization Large scale data Linear dimensionality reduction Similarity matrix Time consumption |
DOI | 10.1016/j.asoc.2024.111817 |
收录类别 | EI ; SCIE |
ISSN | 1568-4946 |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:001320678700001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20242516288341 |
EI主题词 | Iterative methods |
EI分类号 | 723.2 Data Processing and Image Processing ; 921.1 Algebra ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.6 Numerical Methods |
原始文献类型 | Journal article (JA) |
EISSN | 1872-9681 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.lzufe.edu.cn/handle/39EH0E1M/37282 |
专题 | 信息工程与人工智能学院 |
通讯作者 | Yang, Zhengguo |
作者单位 | 1.School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Gansu, Lanzhou; 730020, China; 2.School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Shaanxi, Xi'an; 710072, China |
第一作者单位 | 信息工程与人工智能学院 |
通讯作者单位 | 信息工程与人工智能学院 |
推荐引用方式 GB/T 7714 | Yi, Jihai,Duan, Huiyu,Wang, Jikui,et al. Structure preserved fast dimensionality reduction[J]. Applied Soft Computing,2024,162. |
APA | Yi, Jihai,Duan, Huiyu,Wang, Jikui,Yang, Zhengguo,&Nie, Feiping.(2024).Structure preserved fast dimensionality reduction.Applied Soft Computing,162. |
MLA | Yi, Jihai,et al."Structure preserved fast dimensionality reduction".Applied Soft Computing 162(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论